@article{313, keywords = {Adsorption, Carbon monoxide, Carbonyl forms, Catalysts, Dicarbonyl bands, Infrared emission spectra, Infrared spectroscopy, Platinum}, author = {T.I. Korányi and Judith Mihály and E. Pfeifer and Csaba Németh and T. Yuzhakova and Janos Mink}, title = {Infrared emission and theoretical study of carbon monoxide adsorbed on alumina-supported Rh, Ir, and Pt catalysts}, abstract = {The infrared emission spectra of CO adsorbed on alumina-supported 1, 3, and 5 wt % Rh, Ir, and Pt metal-containing catalysts were studied at 423 and 473 K. While CO is adsorbed in dicarbonyl (dimer), linearly (on-top) bonded and bridged carbonyl forms on rhodium and platinum, the dimer form is dominant on iridium. The relative intensity of Rh-CO and Ir-CO linear bands decrease with increasing temperature compared to the intensity of the dicarbonyl bands; the corresponding bands on Pt behave the opposite way. Two dicarbonyl and two linear Pt-CO bands were identified in the infrared spectra of Pt/Al2O 3 catalysts. The surface structure (kinked or planar Pt atoms), the dispersity of the metal, the temperature, and the quantity of adsorbed CO on the surfaces all have an effect on the fine structure of the Pt-CO stretching bands. The metal-carbon and CO stretching force constants were calculated for surface dicarbonyl, linearly bonded CO, and bridged carbonyl species. The metal-carbon stretching wavenumbers and force constants were predicted and compared between surface species and metal carbonyl complexes. The iridium-carbon bonds were found always stronger than the Rh-C and Pt-C ones in all surface species. The observed stretching wavenumbers and force constants seem to support the idea that CO and metal-carbon bonds are always stronger in metal carbonyl complexes than in adsorbed surface species. The distribution and mode of CO adsorption on surface metal sites can be effectively studied by means of infrared emission spectroscopy. © 2006 American Chemical Society.}, year = {2006}, journal = {Journal of Physical Chemistry A}, volume = {110}, pages = {1817-1823}, month = {2006}, isbn = {10895639 (ISSN)}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-33644815459&partnerID=40&md5=9b832db63300a31e5b8b6ec892f6644f}, note = {Cited By :19Export Date: 12 September 2016CODEN: JPCAFCorrespondence Address: Korányi, T.I.; Department of Molecular Spectroscopy, Institute of Structural Chemistry, Hungarian Academy of Sciences, P. O. Box 17, H-1525 Budapest, Hungary; email: koranyi@chemres.huReferences: Mink, J., (2002) Handbook of Vibrational Spectroscopy, 2, p. 1193. , Chalmers, J. M., Griffiths, P. R., Eds.; Wiley: New York;Ryczkowski, J., (2001) Catal. Today, 68, p. 263; Frost, R.L., Kloprogge, J.T., Russell, S.C., Szetu, J.L., (1999) Thermochim. Acta, 329, p. 47; Kloprogge, J.T., Frost, R.L., (1999) Appl. Catal. A, 184, p. 61; Pritchard, J.J., (1972) Vac. Sci. Technol., 9, p. 895; Hadjiivanov, K.I., Vayssilov, G.N., (2002) Adv. Catal., 47, p. 307; Chafik, T., Dulaurent, O., Gass, J.L., Bianchi, D., (1998) J. Catal., 179, p. 503; Mink, J., Keresztury, G., Szilágyi, T., Tétényi, P., (1993) J. Mol. Struct., 293, p. 283; Bódis, J., Németh, Cs., Mink, J., Keresztury, G., Tétényi, P., (1997) J. Mol. Struct., 410-411, p. 179; Mink, J., Szilágyi, T., Wachholz, S., Kunath, D., (1986) J. Mol Struct., 141, p. 389; Scholes, F.H., Locatelli, A., Kleine, H., Ostanin, V.P., King, D.A., (2002) Surf. Sci., 502-503, p. 249; Mink, J., Mink, L., Computer program system for vibrational analysis of polyatomic molecules (2004) Lahey-fujitsu Fortran Win32, , Stockholm; Dulaurent, O., Chandes, K., Bouly, C., Bianchi, D., (2000) J. Catal., 192, p. 262; Frank, M., Kühnemuth, R., Bäumer, M., Freund, H.-J., (2000) Surf. Sci., 454-456, p. 968; Hadjiivanov, K., Ivanova, E., Dimitrov, L., Knözinger, H.J., (2003) Mol. Struct., 661-662, p. 459; Erdőhelyi, A., Fodor, K., Suru, G., (1996) Appl. Catal. A, 139, p. 131; Raskó, J.J., (2003) Catal., 217, p. 478; Bourane, A., Bianchi, D.J., (2003) Catal., 218, p. 447; Stakheev, A.Yu., Shpiro, E.S., Tkachenko, O.P., Jaeger, N.I., Schulz-Ekloff, G., (1997) J. Catal., 169, p. 382; Tolenaar, F.J.C.M., Bastein, A.G.T.M., Ponec, V.J., (1983) Catal., 82, p. 35; Braterman, P.S., Metal Carbonyl Spectra, p. 1975. , Academic Press: London; Mink, J., (1987) Mikrochim. Acta, 3, p. 63; Van Woerkom, P.C.M., FTIR studies of catalyst systems under realistic processing conditions (1988) Advances in Applied Fourier Transform Infrared Spectroscopy, pp. 323-347. , Mackenzie, M. W., Ed.; Wiley: Chichester; Mink, J., Keresztury, G., (1993) Appl. Spectrosc., 47, p. 1446; Primet, M., Foulloux, P., Imelik, B.J., (1980) Catal., 61, p. 553; Cotton, F.A., (1964) Inorg. Chem., 3, p. 702; Goggin, P.L., Mink, J., (1979) Inorg. Chim. Acta, 34, p. 225; Vaska, L., Pene, (1971) J. Chem. Commun., p. 418; Mink, J., Goggin, P.L., (1991) Can. J. Chem., 69, p. 1857; Goggin, P.L., Mink, J., (1974) J. Chem. Soc. (Dalton), p. 534; Tobin, R.G., Richards, P.L., (1987) Surf. Sci., 179, p. 387}, }